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A constructive method is proposed for correcting a process described by a non-
linear vector differential equation in normal form., A vector- disturbance and
the correction vector appear as terms in the right-hand side of the equation ,
For the realization of the method indicated it is necessary to know the maxi-
mum of the absolute value of the vector-disturbance and the phase vector of
the process for a certain sequence of time instants, It is assumed that the right-
hand side of the differential equation satisfies a Lipschitz condition in the phase
coordinate,

1. The optimal course of a certain process is described by the vector differential
equatlon x' — f (I), e [tov t’], z (to) = x, (1. 1)

where vector z belongs to a finite-dimensional Euclidean space, It is assumed that the
Li hitz conditi ’ G ”
PRI CONARAN f @) —f @<L I — 2", L>0 (1.2)

is satisfied in the domain being examined, owing to which the integral curve x (¢),t &
[to, '], z (ty) = xgof Eq. (1.1) exists, is unique and is an absolutely continuous vec-
tor function (see [1]). In what follows the curve mentioned is called the unperturbed or
optimal trajectory. Along the optimal trajectory the progress of the optimal process isim-
peded by a disturbance in the form of a measurable vector function wu? (t), 1t & [t,,

t'] which appears in the right-hand side of Eq. (1. 1) as a supplementary term, Besides

what has been said about this disturbance, it is known only that it satisfies the constraint

)| < gty ¢ E [ty ¥ 2

To neutralize the effect of the disturbance indicated, we introduce a piecewise~constant
vector-function ul(t), t & (o, t'] in the right-hand side of Eq. (1. 1) as another term,
As a result, from Eq. (1. 1) we obtain the differential equation

Y =f@ +u+u tlt, t'h yi) =% (1.4)

whose integral curve y (), ¢ & [ty, ¢'], ¥ (t,) = x4, also in an absolutely-continuous
vector function, existing and unique on the interval being examined, In what follows
this curve is called the perturbed trajectory.

Under the assumption that
P f? L7 x01 t07 t’7 u02 (1, 5)
are known and, in addition, that the points & (¢3) and ¥ (£3) are known for a certainse-~
quence {fp}C [t,, '] of instants, we are required to find a method for constructing
the function u' () which for any specified & >> 0 and any disturbance u? (f) (posses-
sing the properties listed) ensures the satisfaction of the following inequality:
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@) —y@I<e, tlt, v (L.6)

This method must include a rule for determining the sequence {¢x} and must alsotake
into account that under real conditions it takes some time to determine the position of
points z (tz) and y (tx),and to calculate the vector function u! (£), t € [t4, tpisl

The solution of the problem of finding such a method, being a particular manifestation
of the extrapolation method [2],is given below. The method proposed differs in particu-
lar from those in [3—5] (also in contrast to [4, 5], it is not necessary to know the proba-
bility characteristics of the disturbance to realize the method). We note that max y({y4;—
ty) = 0 as g — 0 ,therefore, when g is fairly small, there is not enough time forac-
tually carrying out the calculations,

2, The problem described admits of a more precise formulation in the form of the

following antagonistic differential game of kind, This game is specified by the differ-
ential equation (1,4), where u' (i = 1, 2) is the i-th player's control satisfying all
the requirement imposed, stated in Sect, 1; such a control is termed admissible, The first
player's admissible strategies are piecewise-program strategies which associate with the
quantities Zrs Z (¢z), ¥ (t) and (1,5) a number p4; and a vector function u! (¢),
t € [tx, tyr1) being the restriction of a certain admissible control of the first player
onto {ty, tps1). The second player's admissible strategy can be any one satisfying the
single requirement: the second player's control formed with its aid must be admissible
(i.e., must satisfy the requirements mentioned in Sect, 1), In particular, we understand
that there is discrimination against the first player in the game,

The i-th player's admissible strategy is denoted by ¢? and the class of his admissible
strategies,by V%, The payoff in the game being analyzed is given in the following for-
mula: J (v, v¥) = max |z (t) — y ()1 (2.1

oI
where x (t) is the unperturbed trajectory and ¥ (&) is the perturbed trajectory corres-
ponding to tiie controls generated by strategies v'.

Now the problem being solved in the present paper can be formulated as follows: de-

scribe constructively the strategy p,! &= V1, for which the following relation is satisfied:

J @l ) Le, VAV

From what has been said it is clear that in the game being analyzed the first player is
the minimizing one and the second player the maximizing one (the latter player can be
thought of as "Nature™), The sense of the game is for the first player to ensure 2 real
course of the process (described by the perturbed trajectory) that does not differ, in the
sense of criterion (2. 1) by more than & from the optimal course of the process (described
by the unperturbed trajectory).

3. Assuming the satisfaction of the condition
ul (tp -+ ) = u,' =const, v>0
by virtue of (1, 2) and (1.3), from (1, 4) we obtain

2ot V< |yt + 9| < + Lot

plr, D =lylta+1) —y @), z>0



204 V. N, Lagunov

ay = If (¥ (a)) -+ ue'] + uf?
for almost all 7. Hence it follows that the relation (see [6], p.32):

P (tr, ) < Py (ry T = ayL~1 (exp (L7) — 1), < >0 (3.1

is satisfied for the solution p, (¢x, ) of the differential equation
d
TPt D — Loyt ) — a1 =0, pi(ts, 0)=0, >0

Integrating Eq. (1.4) along the trajectory y (2), t & lin, & F1 > 0., we ob-

tain
t k—{-r

Yo+ —y )= | 7)o+ (3.2)

tk+: fk-{-‘t' Sk-f-t
5 U@+ —7@eNdd+ | u2dd+ [ u?(t+6)do
k g’

i
k
By virtue of what has been said and of (3, 1), the absolute value of the sum of thesecond
and last terms in (3, 2) does not exceed the quantity
k7
By(ty, 1) = SLpl (tx, 8) 6 + ug®t = a L7t (exp (L1) — LT — 1) +ug®t  (3.3)
0
By S (z, 2) we denote a closed sphere in the Fuclidean space being considered, with
center at point & and radius z. From what we said above and from (3, 2) and (3. 3) fol-
lows the validity of
Lemma (on extrapolation). If y(z,) is a point on trajectory y (¢) of Eq.
{1.4), corresponding to instant %y, then for

ut(t) = u,t, te€lty, th+1l, v>0

and for any admissible control u? (), t & l£n, tx - T] the point mentioned is trans-
posed by the instant ¢ = ty -+ T to the point y (¢, -+ 7) lying in a sphere of radius
R, (tn, 7) of (3.3), with center at the point ¥ (£z) + [f (¥ (£)) + u,ll 7, i.e.

Yy + 1) =S (y (6) + I (y (00) + wy'l v, Ry (8, 7)) 3.9

Note. The radius of the sphere in (3.4) cannot be decreased in the general case, It
is easy to establish this by considering an example with L = 0 andu?(t)==us’= const,
where | u,2{ = u,® For this example the point ¥ (¢, + T) in (3.4) is located on the
sphere's boundary, and, by appropriate choice of direction of vector u,?, at any point of
the boundary, Consequently,in the general case the center of the minimum sphere con-
taining all points of the form y (i, -+ 1) is determined uniquely and coincides with the
center of the sphere in (3, 4),

4, Let us estimate from above the distance
rtr+ =l +1) —yE+9l >0

By applying the lemma on extrapolation in the particular case when y! (¢) == u® (f) =
0 and, consequently, ¥ () = x (2), we obtain the inclusion
z (tk + T) e S (x (th) + f (3; (th)) T, R (tk'r T))’ T>0
R (s, ) = If (x ) L7* (exp (L7) — LT — 1)

(4. 1)
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From (3.4} and (4, 1) follows

re o<+ =lly@) -z +@@E) — &2
F@@ (@) + wl vl + Ry (6, ©) + R (ta, )

It is easy to verify that ry (¢, - 1) is a concave function of argument 1,
B. Letus generalize relations {3.4) and (4, 2) to the case of control

0’ tE(tp tk+AT), AT:>O

- 5,1
ul(t)_{u*lxconst-, telt,+Ar AT 4], t>0 .1

By virtue of the lemma on extrapolation we find (see (3.3))

Yy +0) =S @@+ fU ()8, B (s 0) (5.2)
R (ty, 0) = 11 (g Ga))| + ue®] Lt (exp (LB) — LB — 1) +
uyt 0, 8 =10, Artl

By virtue of the same lemma we have

Yy + &+ S (y (s + A1) + (5.3)
[f (y (tk + AT)) + u*i} @, Rl (th + AT) 'fP))’ ¢ = [O, T]

From (1, 2) and (3, 1) follows the inequality
If (y (tn -+ AT) — f (¥ (D)1 << Lo"(tn, A7) (5.4)
p’ (tr, Aty = [If (y (Ee))I'+ uo®) L (exp (LAT) — 1)

A consequence of (5, 2)—(5.4) is the inclusion

y (s + At + @) =8 (y (ta) + f (¥ (tn)) Av + [f (y (24)) + (5.5)
u*i ]q)r R% (t;;, A’C, CP) + R (tlu AI) + Lp’ (th: AT) (p)s' P = [0’ Tl

where R, (t,, AT, @) is obtained from Ry (£ -+ AT, @) of (3.3) by replacing in a;
the quantity |f (y (tx -+ AT)) -+ u,'| by the not lesser quantity (see (5.4))
|F (@ () + gt -+ Lo (tr, A7)

Keeping inclusions (4., 1), (5. 2) and (5. 5) in mind, for the control (5, 1) we obtain the
following relations:

rite +0) < ry (B +0)= ly (t) — x (t) + [f (¥ (t2)) — (5.6
flx ()1 0]+ R (¢, 8) + R (¢, 0), 06 &[0, A1l
r(tk+AT+q>)“<r2(tk+AT+(P)E ]y(th)_x(tk)+ (5.7)

@) —fN(AT+ @) + ut ol + R (6, AT+
{P) -+ Rz (tks AT! (P) + R’ (th’ AT) -+ Lp' (tka AT) 9 = [0, 1]

The concavity of function r, (f, -+ AT + @) in the argument @ can be directly estab-
lished as for the function r; (¢p -+ 0) ; we can see that

ry (b + AT) = 1y (ts + AT)
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6, The number F bounding the function |f {y)] from above in the domain G, be~
ing examined FTWISF, 16

exists since by virtue of (1. 2) the function f (y) is continuous, while the set of points
of Gg, at a distance not exceeding & from the unperturbed trajectory, is bounded. The
number F can be computed in the following way, We specify some positive integer m
and for the points
xl = (to + lAt); At = (t’ - tﬁ) ’1 m, 120, caeg ™
of the unperturbed trajectory we construct the spherical neighborhoods § (z;, 2;), where
2z = |f (w)| L~ (exp (LAY) — 1)

Obviously, the neighborhoods constructed cover the whole unperturbed trajectory, There-
fore, the maximum value of the function |f (z)] on the unperturbed trajectory isno great-
er than the number max; { If (x;)| + Lz;} ; consequently, we can set

F = Gggi {If @)l f ()] (exp (LAY — 1)} + &L = 6.1
max If (z))] exp (LAL) + &L
oi<m

We note, for example, that for the function f (#) = Lz formula (6, 1) yields in the li~
mit as m — oo the least upper bound of function |f(y)| in domain @, as F . As regards
the first term in the right~hand side of equality (6. 1), it is evident that in the limit as
m~— oo it yields, for any function f(y) being examined, the least upper boundof |/ (z) |
on the unperturbed trajectory,

7o Let numbers o and {§ satisfy the following conditions:
I<a<<l, 0<Pp<, a+2p<<t (1.1

Lemma 7,1, If
rit) <en, w()=0 t>1t

{see Sect,4), then rin D<ol —B), TELD, - 7.2)

The lemma's validity follows from the fact that at almost every instant’ [ the rate of
displacement of point y (f) relative to point & (2) equals [f (y(£)) —7 (= () + u? (D).
Until the inequality r (¢) < & is satisfied, the absolute value of the last expression,by
virtue of (1. 2) and (1,3),exceeds the denominator of the fraction in (7. 2).

Lemma 7,2, If
nt<e(d—p), wl@)=0, t>t (7.3)
then

niy+n<e 110, 1l
1g = B / [Le + ug® + Yy F + u,?) LT exp (LT)], T =1t — o (1.4)

As a matter of fact, from (8§, 6) and (7.3) we have
s )< et — B)+ Lev + R (g, ©) + R’ (¢, T (7.5)
Using Maclaurin's formula, we obtain

R (tr, 1) < Yy If (x (tp))| Lr%exp (L) < Yy FLT exp (LT)t (7.6)
R (t, O <Y llf (@ @) + u®lle® exp (Lv) +uPr<< (17D
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Yy (F + ue?) LTexp (LT) T + ug*t, 1 [y, t']
Hence it follows
R (tp, ©) + R’ (tr, ©) < {¥y (2F + ug®) LTexp (LT) + ue®}t =W (1) (7.8)

Having replaced in (7,5) the sum of the last two terms by the right-hand side of inequa=-
lity (7. 8), we equate the new right~-hand side obtained for inequality (7,5) to the num-

ber €. The root of the resulting equation relative to T is the %g of (7.4). Thecon-
clusion in Lemma 17, 2 follows from the method of finding the number T4 The inequality

To > Tg, R (ty, Tp) + R (t, T < W (1) < &p (7.9

is a consequence of relations (7, 1), (7. 2), (7.4),(7.7) and (7, 8) and of the method of
finding the number Ty .

8, Lemma 8,1, If r(ty) € (e, & (1 — B)] (8.1)
and U;,;! and T, satisfy the system of relations

y(tn) — 2 () + UIf (¥ ) — F (@ )] (vp + tr) + ugplt, =0 (8.2)
R (tp, vp + 1) + Ry (tr, g, Th) + R’ (¢, Tp) + Lp’ (tn, Tp)Tr=¢ (1 — P
then under the control

ug' (t) = {

0, PE [, b+ rﬁ)

1 (833)
U, e PE [+ T e+ g+ T

the inequalities
nte+<e, rity +1)<e, 110, Tgl (8.4)
r@a+tp+tm)<e —p), rtx+ 15 +17)<e, 710, 1,] (6.5

are satisfied,
Proof. From (8,1) and (4. 2) follows the inclusion

r (tk) = (Sa, 14 (1 - B)]
and inequality (8. 4) follows from it from Lemma 7,2, and from (8. 3) and (5.6). The.
inequality ry (tp + 1) < & (8.6)
is a consequence of (8,4),(5, 6) and the equality At = Tp in (5, 1) and (8. 3), while from
conditions (8, 2) and (5. 7) ensues the equality
oty +Tp TR =8 (1—pl 8.7
the consequence of which and of (5. 7) is the first inequality in (8,5). Since the function
ry (tp + T + 1), 0 < T < Ty is concave, from (8. 6) and (8.7) follows the inequality
Rty + T+ 1) <8 T (0, 1))

and from it, the second inequality in (8. 5),

The existence of a solution of system (8, 2) follows from a simple analysis of the sys-
tem, We express u, ,! from the first equation of the system and substitute it into the

second equation of the system, The resultant left-hand side of the second equation we
denote by P (t); the equation itself takes the form

P(tp) = (1 — B (8.8)
From (7, 1) and (7, 9) it follows that P (0) << & (1 — B). It is easy to note that P (1)
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is a continuous function increasing unboundedly as T — oo. Therefore, the unique smal-
lest root of Eq. (8, 8) exists,

8. In final form the function P (%) is expressed in terms of elementary functions,
but this form is cumbersome ; it is advisable to find a simpler equation whose solution
would be analogous to the solution T, in the sense of Lemma 8, 1. Using the formula
(7. 6) with subsequent transformations of type (7. 7) we construct a linear increasing func-
tion Py (t) connected with P (1) as follows:

PP (1), >0 P O)<e(l—p (9.1

More precisely, we replace the terms of the left-hand side of Eq. (8, 8) by the right-hand
sides of the inequalities

R (ty, v+ 1)< Yy FL T exp (LT) (15 + 1)
Ry (ty, tp 1KYy {F+let+Le(ry+ NI} Lt exp(LT) + uglt

Since in view of the first equation in (8. 2)

lui k] < le + Le (tp + TRt (9.2)
R (ty, tp) < Yy (F + up?) Lug? exp (L1g) + uo® g
Lo (tg, tp) T (F + uy?) L1g exp (Ltg) T

We see that the function P, (T) constructed possesses all the required properties(the se-
cond inequality in (9, 1) follows from (7, 1) and (7, 9)).
By T* we denote a root of the equation

Py (t) =¢e (1l —P) (9.3)

and by uj , we denote the vector corresponding to it, obtained from the first equation
in (8. 2) solved relative to u; after substituting t* for T,.For what follows it is essen~
tial, as we see from the analysis carried out, that the number T* is unique and indepen-
dent of k. The pair v* and uy; is analogous to the pair T, and uf in the following
sense; all assertions of Lernma 8.1 remain in force if in relations (8, 2)—(8.5) we re~
place T, by ©* and u;y by uy, while in the second equation of system (8.2), P (74)
by P, (t*). As a matter of fact, relations (8, 4) are preserved since neither the number
Tp nor the control u! (£) change in the interval [y, £, + Tg] . In view of (5.7) and
the fact that functions P and P, are connected by inequality (9, 1), the function

ry (& -+ Tg -+ @) and the function ry (¢, -+ T + @) obtained from r, by replacing
the terms forming P (¢), by the function Py (), are connected by the inequality

ratn + 7 + @ <rs(tn + T+ @)y 90

As is easy to note, the properties of function r, are similar to the properties of ry,used
to prove Lemma 8, 1 (in particular, the equality 7y (fy - Ty) = r3 (i -+ Tp) is sa-
tisfied; therefore, the second part of the lemma — the relations (8, 5) — goes over, when
function .r, is replaced by function rj, into the relations resulting from (8.5) when 1,
is replaced by T*. We can note also that all assertions of Lemma 8, 1 remain in force if
T* is replaced by a number v° &= (0, T¥); however, as we see from the estimate

us | < le + Le(tg + v*)1 /3% =e/1* 4+ Le (15/ t* -+ 1) (9.4

being a consequence of (9, 2), the upper bound of the absclute value of the vector-correc~
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tion increases in this case,

10, We can now describe the solution of the problem in the present paper. We find
F (6.1); we specify numbers & and §§ satisfying conditions (7, 1); we find the numbers
Te (7.2) and Tg (7.4); we compute the root T* of Eq, (9.3); we determine the strategy
Vo' in the following way: at the instant ¢ we set up! () = 0, t & [ty, t, -+ Tp);
we find r (ta); if r () < ea, we define up'(t) =0, t [ty + 15, tnal and
ther = tp + Ta; if 7 (8) € (e, & (1 — B)], then, having replaced Ty in the fiist
equality in (8.2) by t* and having replaced uj ) by ul, .we find uyy, after which
we define 6, (1) = u‘%,k, t €ty + Tp, tra) and 4y = tp + Tp + T*, From
everything we have said earlier it follows that the strategy constructed possesses all the
properties required,

Notes, 1°, The computation of r (1) and u ) must be carried out on the time
interval ita, tp + Tpl

2°, As T* we can take the number
T° = min {T*, T, — T}

Then the sequence {tp}, tx = to + &k (Tg + T°) becomes known right away and, conse~
quently, even before effecting the correction we can compute the vectors = (¢y) and
7 (= (tx)) (but,in this case, the right-hand side of inequality (9,4) can increase).
3°, If the constant [ is not given,but the function f (z) is sufficiently regular,

we can estimate L by constructing the neighborhoods of points xz; considered in Sect,
6 and making use of the expansion of function f (z) into Taylor series in a neighborhood
of each point =z;.

On the basis ot the method presented in this paper, a monitored calculation of a mo-
del example was carried out on an electronic computer, The block diagram of the cal-
culation program was cornpiled using the description presented above.
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