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A constructive method is proposed for correcting a process described by a non- 

linear vector differential equation in normal form. A vector- disturbance and 

the correction vector appear as terms in the right-hand side of the equation . 
For the realization of the method indicated it is necessary to know the maxi- 

mum of the absolute value of the vectordisturbance and the phase vector of 
the process for a certain sequence of time instants. It is assumed that the right- 

hand side of the differential equation satisfies a Lipschitz conslition in the phase 
coordinate. 

1, The optimal course of a certain process is described by the vector differential 
equation 

5’=f(z), 1 E [to, t’l, z (to) = ql (1.1) 

where vector 3 belongs to a finite-dimensional Euclidean space. It is assumed that the 

LipscXtz condiaJn If (x') - f @")I < L 12' - Z#l, L),() (1.2) 

is satisfied in the domain being examined, owing to which the integral curve r (r), t E 

[to, t’l, z (to) = X0 of Eq. (1.1) exists, is unique and is an absolutely continuous vec- 
tor function (see Cl]). In what follows the curve mentioned is called the unperturbed or 

optimal trajectory. Along the optimal trajectory the progress of the optimal process is im- 
peded by a disturbance in the form of a measurable vector function u2 (t), t E [to, 

t’] which appears in the right-hand side of Eq. (1.1) as a supplementary term. Besides 

wnat has been said about this disturbance, it is known only that it satisfies the constraint 

lu2(t)l < Uo2, t C? [to, t’] (1.3) 

To neutralize the effect of the disturbance indicated, we introduce a piecewise-constant 

vector-function u’(t), t E [to, t’] in the right-hand side of Eq. (1.1) as another term. 

As a result, from Eq. (1.1) we obtain the differential equation 

Y’ = f (Y) + ui + u2, t E [to, t’l, Y (to) = x0 (1.4) 

whose integral curve y (t), t E [to, 

trajectory. 
Under the assumption that f, L, xo, 

to, t’, noa (1.5) 

are known and,in addition, that the points 5 (tk) and Y (tk) are known for a certainse- 
quence {tk}C [to, t’] of instants, we are required to find a method for constructing 

0 and any disturbance u2 (t) (posses- 
sing the properties listed) ensures the satisfaction of the following inequality : 
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lx (t) - y (t) I < e, t E tto, t’J (1.6) 

This method must include a rule for determining the sequence {tk) and must also take 

into account that under real conditions it takes some time to determine the position of 

points x(tk) and y (tk) ,and to calculate the vector function ui (t), t E [tk, tk+ll 
The solution of the problem of finding such a method, being a particular manifestation 

of the extrapolation method [2],is given below. The method proposed differs in particu- 
lar from those in [3--S] (also in contrast to 14, 51, it is not necessary to know the pcoba- 
bility characteristics of the disturbance to realize the method).We note that maxk(tk+l- 

&J -e 0 as e -+ 0 , therefore, when E is fairly small, there is not enough time for ac- 
tually carrying out the calculations. 

2, The problem described admits of a more precise formulation in the form of the 
following antagonistic differential game of kind. This game is specified by the diffec- 

ential equation (1.4), where U* (i = 1, 2) is the i-th player’s control satisfying all 
the requirement imposed,stated in Sect. 1; such a control is termed admissible. The first 
player’s admissible strategies ace piecewise-program strategies which associate with the 
quantities tk, 2 (tk), Y (tk) and (1.5) a number tk+l and a vector function u*’ (t), 

t E [tk, tktl) being the restriction of a certain admissible control of the first player 
onto [tk, tk+l). The second player’s admissible strategy can be any one satisfying the 

single requirement: the second player’s control formed with its aid must be admissible 
(i.e., must satisfy the requirements mentioned in Sect. 1). In particular, we understand 

that there is discrimination against the first player in the game. 
The i-th player’s admissible strategy is denoted by c$ and the class of his admissible 

strategies, by Vi_ The payoff in the game being analyzed is given in the following for- 

mula 

const, z > 0 

by virtue of (1.2) and (1.3). from (1.4) we obtain 

P @kt a) = k (tk + x) - y (tk)\, 7 >, 0 
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for almost all 7 , Hence it follows that the relation (see 161, p. 32) : 

P h x> < PI (tk, 9 = a&-’ (exp (LT) - 1), z > c (3.1) 

is satisfied for the solution pa (t k, z) of the differential equation 

& Pl ftk> z) - -bl @k, x) - a, =O, &@k,O)=O, 7a.o 

Integrating Eq. (1.4) along the trajectory y (t), t E: ltk, tk t z], it > O., we ob- 
tain 

$-t-T 

Y @i -t- z, - Y (tk) = s f (Y (tk)) de It (3.2) 

tlr 
tk+’ 

[ if (Y (& + 0)) - f (Y (tk))] de + 

$t-T fk+5 

f l”tl do + s us (tk + 8)de 

% tk 

By virtue of what has been said and of (3. I.), the absolute value of the sum of thesecond 
and last terms in (3.2) does not exceed the quantity 

By s (5, Z) we denote a closed sphere in the Euclidean space being considered, with 

center at point t and radius z. From what we said above and from (3.2) and (3.3) fol- 
lows the validity of 

Lemma (on extrapolation). If 9 (tk) is a point on trajectory y (t) of Eq. 

(1.4), correspontig to instant tk, then for 

Ui (t) = u*i, t e k, tk + ‘Gl, z > 0 

and for any admissible control us (t), t E [t k, tk f ~1 the point mentioned is trans- 

posed by the instant t = tk + ‘G to the point y (tk + z) lying in a sphere of radius 

Ii, (tk, z) of (3,3), with center at the point y (tk) + [f (y (~~)) f SZ.+~~ ‘t, i.e. 

Y (k + z) = s (Y (tk) + if (z!/ (tk)) + +.“I 7, fi, (tkr ‘@) (3.4) 

Note. The radius of the sphere in (3.4) cannot be decreased in the general case. It 
is easy to establish this by considering an example with L = 0 and u”(t)= u*‘= cons% 
where \ ~*a i = uo8. For this example the point Y (& i- 7) in (3.4) is located on the 
sphere’s boundary, and, by appropriate choice of direction of vector u*a , at any point of 
the boundary. Consequently, in the general case the center of the minimum sphere con-, 
taming all points of the form y (tk f r) is determined uniquely and coincides with the 
center of the sphere in (3.4). 

Q. Let us estimate from above the distance 

r (tk + 7) = /x (tk + T) - y (h-2 + @I, z>O 

By applying the lemma on extrapolation in the particular case when ~1 (t) nar u2 (t) z 
0 and,consequently, y (t) s z (t), we obtain the inclusion 

5 (tk + Z) E 8 (x (tk) + f (x (tk)) ‘t, R (ha, %)), T),O 
(4.1) 

R (tkt %) = If (x (tk)) 1 L-’ (exp (La) - LT - $1 
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From (3.4) and (4.1) follows 

r @k + T, < rl ttk + t, = lb! (h) - 3 (&)I + [f (?/ (tk)) - 
f (5 @k)) + u*‘l %I + & @kr a) + R @k, a> 

(4*2) 

It is easy to verify that r, (tk + 7) is a concave function of argument 7. 

6, Let us generalize relations (3.4) and (4.2j to the case of control 

d(t) = 
0, t E [tk, tk + AZ), AZ > 0 

u l=const., t~[t,+Az, $+Az+z], z>O 
(5.1) 

* 

By virtue of the lemma on extrapolation we find (see (3.3) ) 

?d (tk i- @ & s (Y (tk) -i- f (!/ @It)) 8, R’ (tk, 0)) (5.2) 
R’ @A, 8) = I If (y (&))I + uosl L-” (exp (L8) - L6 - 4) -t- 

uo2 0, 0 E [O, ATI 

By virtue of the same lemma we have 

Y (tk + AT + cp) E 8 (Y @R + A%) + (5.3) 

If (Y @R + AT)) + u*‘l cp, R, (k + AZ, cp)>, ‘p Ez [OS a? 

From (1.2) and (3.1) foliows the inequality 

If (Y (k f W) - f (Y (fh)) 14 fd-f(b, A9 (5.4) 

p‘ (tk, AZ) = IIf (Al (&))I‘+ uosj L-’ (exp @A$ - 1) 

A consequence of (5.2)-(5.4) is the inclusion 

y (tk + AT + cp) E? s (Y (tk) + f (Y bh)) AT + If (Y (tk)) +- (5.5) 
z$ 1% R, &kt AZ, cp) + R’ (tk, AT) 4 LP’ (tk, 4 Cph Cp E: lo, d 

where R, (tk, AT, 9) is obtained from R, (tk + AT, cp) of (3.3) by replacing in ui 

the quantity If (y (tk -t AT)) + u*‘l by the not lesser quantity (see (5.4)) 

1 f (Y (tk)) + $I -t LP’ (b, h-1 

Keeping inclusions (4, l), (5,2> and (5.5) in mind, for the control (5.1) we obtain the 
following relations : 

r (tk + 6) < rl (tk + 0) = lg OkI - 2 (GJ + [f (if thd) - 
f (z (t&l 61 +- R (f~, 0) + E’ (tk, e), 8 6% [o, A-cl 

(5.6) 

r (tk + AZ + cp) < r2 (tk + AT i- cp) 5 IV (M - 5 (bJ Jr 

tf (y @A)) - f (x (t&f (A% -l- 9) + %z’ 91 + B (tk, AT + 

(5.7) 

rP> i- Ra (tk, AT, cp) + R’ (ha, AT) + LP’ (tk, 4 9, Cp E [o, -T] 

The concavity of function rs (tk + AZ -i- 9) in the argument cp can be directly estab- 
lished as for the function ri (th + 0) ; we can see that 

rl (tk + A-+ = rz (tk + AT) 
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6. The number 8’ bounding the fimction \f (g) \ from above in the domain G, be- 
ing examined 

tf (8 i < F, Y E G, 

eb(ist since by virtue of (1.2) the function f (8) 1s continuous, while the set of points 

El at a distance not exceeding E from the unperturbed trajectory, is bounded. The 
number F can be computed in the following way. We specify some positive integer m 

and for the points 
“r=x(to-I-JAilt), At=@‘--t,)Im, I=O ,.,., m 

of the unperturbed trajectory we construct the spherical neighborhoods S (x1, zl)+ where 

21 = lf (sr)f L-* (exp flats - 1) 

Obviously, the neighborhoods constructed cover the whole unperturbed trajectory. There- 
fore, the maximum value of the function If (5) f on the unperturbed trajectory is no great- 
er than the number maxI ( If (zr) 1 -+ Lz,) ; consequently, we can set 

F = r=& ( If (4 I+ 1 f (Jo) 1 @xp PW - 1)) + d = 

max Tf (xJ 1 exp (LAt) + EL 
0GIGm 

We note, for example, that for the function j fz) = kc formula (6, I) yields in the li- 
mit as rn, --+ co the least upper bound of unction 1 f (g) 1 in domain G, as F . As regards 
the first term in the right-hand side of equality (6, l), it is evident that in the limit as 

m - 00 it yields, for any function f (y) being examined, the least upper bound of 1 f @)I 
on the unperturbed trajectory. 

7. Let numbers a and fi satisfy the following conditions: 

O<a<l, O<#J<i, a-k28<~ (7.11 

Lemma 7.1. If 
r (tk) < -sa, ui (t) = 0, t > tk 

(see Sect, 4), then 
?. (tr$ + 7) < E (1. - @), ‘G E: to, z,l 

‘I: - E (1 - a - @f I (LE + r.kf> a- 

(7.2) 

The lemma’s validity follows from the fact that at almost every instar& t the rate of 
displacement of point y (4 relative to point 5 (t) equals [f (~(~))-~~~(~))+ 14% (t)]. 
Until the inequality r (t) < e is satisfied,the absolute value of the last expression,by 
virtue of (1.2) and (1,3),exceeds the deno~nator of the fraction in (7.2). 

Lemma 7.2. If 
r.1 (tk) < e (1 - g), u* (t) = 0, t > tk (7.3) 

then 

r.1 ($A + a) < 8, ZI E lo, rpl 

‘GB = ~fi / [LE + uoe + i/a (2F -k utp;) LT exp (LT)], T =t t'-- to (7.4) 

As a matter of fact, from (5.6) and (7.3) we have 

r-k (tk f.7) < 6 (1 - @) + f;E-C t- B (tkt z> + R' ftk, T, (7.5) 

Using Maclaurin’s formula, we obtain 

R (tk, T) < Vz If (z (tk)) I LT2exp (Lz) < ‘1% FLT exp (LT) z (7.6) 

R' (tr, x)-G "1% IIf (z ftk))l -I- uo21Lz2 exp (La) + uoo 't < (7.7) 



Correction of a nonlinear controlled process 207 

V2 (F + uo2) LTexp (LT) T + uo2z, z E [tk, t’l 

Hence it follows 

R (tk, r) + R’ (tk, a) < { Vs (2F + uo2) LTexp (LT) + uo2}~ rW (T) (7.8) 

Having replaced in (7.5) the sum of the last two terms by the right-hand side of inequa- 
lity (7.8), we equate the new right-hand side obtained for inequality (7.5) to the num- 

ber E. The root of the resulting equation relative to 7 is the ‘Cp of (7.4). The con- 
clusion in Lemma 7.2 follows from the method of finding the number zci The inequality 

is a consequence of relations (7. I), (7.2), (7.4), (7.7) and (7.8) and of the method of 

finding the number rB . 

8, Lemma 8.1. If 
7. (tk) E (aa, E (1 - 

and ul,ki and ‘th satisfy the system of relations 

Y (bJ - 5 w + [f (Y h)) - f b b41 (% + 
R (tttv TB + ‘GJ + R2 b, xpr 7iJ + R’ Ok, Q) 

then under the control 

I31 (8.1) 

Tk) + Ul,kiTk = 0 63.2) 

+ Lp’ (tk, +k=& (1 - p)- 

(8,3) 

rl (tk + a> < &, 7. (tk + 7) < 8, It E io, ‘tf)] (8.4) 

r (tk + 78 + 7~) < e (1 - p), T-(tk + Ttp + Z) < E, ‘C E [o, zk] (8.5) 

are satisfied. 
Pro of . From (8.1) and (4.2) follows the inclusion 

rl (tk) E (a@, a (t - b)l 

and inequality (8.4) follows from it from Lemma 7.2, and from (8.3) and (5.6). The - 

inequality rz (tk + ‘G& d & (8.6) 

is a consequence of (8.4),(5.6) and the equality AZ = ‘tp in (5,l) and (8.3), while from 

conditions (8.2) and (5.7) ensues the equality 

ra (tk + r,j + rk) = & (t - b)I (8.7) 

the consequence of which and of (5.7) is the first inequality in (8.5). Since the function 
r, (tk + -rB + a), 0 f 7 < rk is concave, from (8.6) and (8.7) follows the inequality 

rZ (tk f ‘f~ + 7) < a, r = [O, rkl 

and from it, the second inequality in (8.5). 
The existence of a solution of system (8.2) follows from a simple analysis of the sys- 

tem. We express uI,k 1 from the first equation of the system and substitute it into the 
second equation of the system. The resultant left-hand side of the second equation we 

denote by P (‘tk); the equation itself takes the form 

p (78) = e (1 - p). (8.8) 

From (7.1) and (7.9) it follows that P (0) ( E (1 - fi). It is easy to note that P (T) 
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is a continuous function increasing unboundedly as T -+ 00. Therefore, the unique smal- 
lest root of Eq. (8.8) exists. 

0. In final form the function P (7) is expressed in terms of elementary functions, 

but this form is cumbersome ; it is advisable to find a simpler equation whose solution 

would be analogous to the solution -G:, in the sense of Lemma 8.1. Using the formula 

(7.6) with subsequent transformations of type (7.7) we construct a linear increasing func- 

tion P, (T) connected with P (z) as follows: 

p (z) 4 p, (71, z>, 0; p, (0) < n (1 - B) (9.1) 

More precisely, we replace the terms of the left-hand side of Eq. (8.8) by the right-hand 
sides of the inequalities 

Since in view of the first equation in (8.2) 

l&l < [E + LE (Q -I- -ck)l~k-i 
R’ (tk, tP) < ‘I, (F + ~0%) Lzp2 exp (LQ) $- uo2 ‘tg 

L$ (tk, q3) ‘T; < (F + uo2) Lz, exp (AT@) 7 

(9.2) 

We see that the function PI (T.) constructed possesses all the required properties(these- 

cond inequality in (9.1) follows from (7.1) and (7.9)). 
By a* we denote a root of the equation 

pi (4 = e (1 - B) (9.3) 

and by r,& we denote the vector corresponding to it, obtained from the first equation 

in (8.2) solved relative to u1.b after substituting T* for zk,For what follows it is essen- 
tial, as we see from the analysis carried out, that the number ‘G* is unique and indepen- 

dent of k. The pair T* and u;,~ is analogous to the pair zk and ZL:,~ in the following 

sense : all assertions of Lemma 8.1 remain in force if in relations (8.2)-(8.5) we re- 

place zk by z* and Z&K by u&, while in the second equation of system (8.2), P (ak) 
by P, (z*). As a matter of fact,relations (t?. 4) are preserved since neither the number 
~~ nor the control ui (;t> change in the interval [tk, tk + T,,] . In view of (5.7) and 
the fact that functions P and P, are connected by inequality (9, l), the function 

?+a (tk -k ‘Cb -j- ‘p) and the function rs (tk -j- %tp i- 9) obtained from r2 by replacing 
the terms forming P fq), by the function P, (cp), are connected by the inequality 

r, (tk + T@ + (f> < 7s @k + zf3 + q), v>,o 

As is easy to note, the properties of function r3 are similar to the properties of r2,used 

to prove Lemma 8.1 (in particular, the equality r2 (tk + %I$) = r3 (tk + T‘p) is sa- 
tisfied ; therefore, the second part of the lemma - the relations (8.5) - goes over, when 

function _rz is replaced by function r3, into the relations resulting from (8.5) when %k 
is replaced by z*. We can note also that all assertions of Lemma 8.1 remain in force if 

r* is replaced by a number z’ E (0, 1;“); however, as we see from the estimate 

[r&l, 1 < I& + Le (.tp + ‘G*)l i z* = e / z* + LE (T@ / T* + 1) (9.4) 

being a consequence of (9.2), the upper bound of the absolute value of the vector-correc- 
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tion increases in this case. 

10, We can now describe the solution of the problem in the present paper. We find 
F (6.1) ; we specify numbers CL and @ satisfying conditions (7.1) ; we find the numbers 

ra (7.2) and rp (7.4); we compute the root z* of Eq. (9.3); we determine the strategy 
uoi in the following way: at the i&ant tk We Set uki (t) = 0, t I? [tk, tk + T&; 

we find r (tk); if r(tr) < ect, we define uki(t) = 0, t E [tk + TV, tk+%] and 

t&r = tk + z,; if r (tk) E (8% e (4 - &], then,having replaced %k in tire first 
equality in (8.2) by T;* and having replaced r& by r&1, , we find r&k, after which 

we define nki (t) = z&k9 t 6% Itk + Tfj, t&l) and t&l = tk + ‘tp + 2*, From 
everything we have said earlier it follows that the strategy constructed possesses all the 
properties required. 

Notes, 1”. The compntation of P (tk) and z& must be carried out on the time 
interval Irk% tk + ‘t& 

2”. As -c* we can take the number 

li’ = min (‘c*, IttL - zp) 

Then the sequence {tk), tk = to i- k (Ts i- To) becomes known right away and, Conse- 

quently,even before effecting the correction we can compute the vectors r (tk) and 

f (X (tk)) (but, in this case, the right-hand side of inequality (9.4) can increase). 
3”. If the constant L is not given,but the function f (2) is sufficiently regular, 

we can estimate L by constructing the neighborhoods of points 51 considered in Sect. 

6 and making use of the expansion of function f (5) into Taylor series in a neighborhood 

of each point xl. 
on the basis or the method presented in this paper, a monitored calculation of a mo- 

del example was carried out on an electronic computer, The block diagram of the cal- 

culation program was compiled using the description presented above. 
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